
Chapitre 5

Calorimétrie

5.2 Capacité thermique d’un métal

Un bloc métallique de masse M1 a une température initiale T1i. Il
est plongé dans un calorimètre rempli d’une masse M2 d’eau. Le transfert de
chaleur du métal vers l’eau provoque l’augmentation de la température de l’eau
d’une température initiale T2i à une température finale Tf . On suppose que la
capacité thermique du calorimètre est négligeable et que le bloc et l’eau sont
incompressibles. Le système formé du bloc et de l’eau est considéré comme
isolé. La capacité thermique massique de l’eau est c∗2. Déterminer la capacité
thermique massique du métal c∗1.

Application numérique

M1 = 0.5 kg, M2 = 1 kg, T1i = 120◦C, T2i = 16◦C, Tf = 20◦C and c∗2 = 4187
J kg−1 K−1.

5.6 Accroissement de la température lors d’un choc

Une sphère métallique de masse M est en chute libre d’une hauteur h.
Elle entre en collision avec le sol et reste collée au sol après le choc. Durant
le choc, on suppose qu’il n’y a pas de déformation macroscopique de la sphère
et qu’il n’y a pas de transfert de chaleur entre la sphère et le sol. Soit i l’état
initial juste avant la chute libre et f l’état final juste après la collision (fig. 5.1).
Déterminer la variation de température de la sphère ∆Ti→f durant le choc.

5.10 Trois cylindres

Trois cylindres considérés comme des sous-systèmes simples fermés 1,
2 et 3 de sections identiques A contiennent N moles d’un gaz parfait (fig. 5.2).
Les cylindres sont fixés sur une table qui assure un contact thermique entre
eux. Le système est maintenu à une température T constante. Les pistons qui
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Fig. 5.1 Une sphère métallique de masse M , initialement immobile, a un mouvement de
chute libre d’une hauteur h puis s’immobilise au sol.

contiennent le gaz dans chaque cylindre sont montés sur un levier. La masse
du levier et les transferts de chaleur entre le gaz et le dispositif mécanique sont
négligeables. À chaque instant, le gaz parfait, contenu dans les cylindres de
volume V1, V2 et V3, est à l’équilibre mécanique avec les pistons.

Fig. 5.2 Trois cylindres renferment chacun N moles de gaz. La table assure une température
T constante des trois cylindres.

1) Déterminer les forces extérieures F ext
1 , F ext

2 et F ext
3 exercées par le gaz

sur le levier par l’intermédiaire des pistons et de la barre verticale.

2) En appliquant une loi de conservation mécanique liée au premier principe,
établir la condition d’équilibre pour les pressions p1, p2 et p3.

3) Déterminer la relation liant les variations de volume ∆V1,i→f , ∆V2,i→f et
∆V3,i→f des sous-systèmes imposées par le levier pour un mouvement d’un
état initial i où l’angle d’inclinaison du levier par rapport à l’axe horizontal
est nul, c’est-à-dire θ = 0, à un état final f où l’angle d’inclinaison est θ.

4) Déterminer la variation d’énergie interne ∆Ui→f du système lors d’un mou-
vement de levier.

5) Montrer que la source d’entropie ΣS de l’ensemble formé du gaz parfait
contenu dans les trois cylindres et des pistons est nulle lors d’un mouvement
de levier. On considère ici les pistons comme l’environnement du gaz parfait.
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5.11 Relation de Mayer pour un élastique

Un élastique de longueur L est soumis à deux forces élastiques sy-
métriques qui provoquent son élongation (fig. 5.3). L’élastique est considéré
comme un système simple constitué d’une seule substance chimique. On sup-
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Fig. 5.3 Un élastique de longueur L est soumis à une force résultante de module f qui est
égale en norme à la tension.

pose que le travail effectué par la force de module f est réversible, ce qui signifie
que la norme de la tension de l’élastique est égale à f . Ainsi, le module de la
force f peut être considérée comme variable d’état et le travail infinitésimal
effectué sur l’élastique par la force de module f s’écrit,

δW = f dL

La différentielle de l’énergie interne s’écrit,

dU (S,L) = δQ+ δW = T dS + f dL

Le coefficient de dilatation à force constante αf et le coefficient de compressi-
bilité isotherme χT de l’élastique sont définis comme,

αf =
1

L

∂L (T, f)

∂T
> 0 et χT =

1

L

∂L (T, f)

∂f
> 0

1) Exprimer la différentielle de la longueur dL (T, f) en fonction du coeffi-
cient de dilatation à force constante αf et du coefficient de compressibilité
isotherme χT .

2) Déterminer l’expression de la capacité thermique à longueur constante CL

et de la capacité thermique à force constante Cf en fonction des fonctions
entropies S (T, L) et S (T, f) respectivement.

3) Déterminer les différentielles de l’énergie libre dF (T, L) et de l’énergie libre
de Gibbs dG (T, f).

4) Montrer que la chaleur infinitésimale δQ fournie à l’élastique peut être
écrite en termes des capacités thermiques comme,

δQ = Cf dT + αf LT df et δQ = CL dT +
αf

χT
T dL
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5) Montrer que les capacités thermiques CL et Cf sont liées par la relation de
Mayer,

Cf − CL =
α2
f

χT
T L


