CHAPITRE 5

Calorimétrie

5.2 Capacité thermique d’un métal

YYok¥  Un bloc métallique de masse M; a une température initiale T7;. 11
est plongé dans un calorimetre rempli d’'une masse My d’eau. Le transfert de
chaleur du métal vers I’eau provoque I'augmentation de la température de I’eau
d’une température initiale 75; a une température finale T'y. On suppose que la
capacité thermique du calorimetre est négligeable et que le bloc et ’eau sont
incompressibles. Le systeme formé du bloc et de 'eau est considéré comme
isolé. La capacité thermique massique de ’eau est c¢5. Déterminer la capacité
thermique massique du métal cj.

Application numérique

My = 0.5 kg, My = 1 kg, Ty; = 120°C, Ty; = 16°C, Ty = 20°C and ¢} = 4187
J kg P KL

5.6 Accroissement de la température lors d’un choc

Yook Une sphere métallique de masse M est en chute libre d’une hauteur h.
Elle entre en collision avec le sol et reste collée au sol apres le choc. Durant
le choc, on suppose qu’il n’y a pas de déformation macroscopique de la sphére
et qu’il n’y a pas de transfert de chaleur entre la sphere et le sol. Soit 7 1’état
initial juste avant la chute libre et f I’état final juste apres la collision (fig. 5.1).
Déterminer la variation de température de la sphere AT,y durant le choc.

5.10 Trois cylindres

Yook Trois cylindres considérés comme des sous-systeémes simples fermés 1,
2 et 3 de sections identiques A contiennent N moles d’un gaz parfait (fig. 5.2).
Les cylindres sont fixés sur une table qui assure un contact thermique entre
eux. Le systéme est maintenu a une température T constante. Les pistons qui
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Fig. 5.1 Une sphére métallique de masse M, initialement immobile, a un mouvement de
chute libre d’une hauteur h puis s’immobilise au sol.

contiennent le gaz dans chaque cylindre sont montés sur un levier. La masse
du levier et les transferts de chaleur entre le gaz et le dispositif mécanique sont
négligeables. A chaque instant, le gaz parfait, contenu dans les cylindres de
volume Vi, V5 et V3, est a I’équilibre mécanique avec les pistons.

Fig. 5.2 Trois cylindres renferment chacun N moles de gaz. La table assure une température
T constante des trois cylindres.

1) Déterminer les forces extérieures F ™' F5*' et F5*' exercées par le gaz
sur le levier par I'intermédiaire des pistons et de la barre verticale.

2) En appliquant une loi de conservation mécanique liée au premier principe,
établir la condition d’équilibre pour les pressions p1, p2 et ps.

3) Déterminer la relation liant les variations de volume AV4y ;. 7, AV ¢ et
AV3 i, ¢ des sous-systeémes imposées par le levier pour un mouvement d’'un
état initial 2 ou 'angle d’inclinaison du levier par rapport a I’axe horizontal
est nul, c’est-a-dire § = 0, a un état final f ou 'angle d’inclinaison est 6.

4) Déterminer la variation d’énergie interne AU;_, y du systéme lors d’un mou-
vement de levier.

5) Montrer que la source d’entropie ¥g de ’ensemble formé du gaz parfait
contenu dans les trois cylindres et des pistons est nulle lors d’un mouvement
de levier. On considere ici les pistons comme ’environnement du gaz parfait.
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5.11 Relation de Mayer pour un élastique

Yook Un élastique de longueur L est soumis & deux forces élastiques sy-
métriques qui provoquent son élongation (fig. 5.3). L’élastique est considéré
comme un systeéme simple constitué d’une seule substance chimique. On sup-

Fig. 5.3 Un élastique de longueur L est soumis & une force résultante de module f qui est
égale en norme a la tension.

pose que le travail effectué par la force de module f est réversible, ce qui signifie
que la norme de la tension de ’élastique est égale a f. Ainsi, le module de la
force f peut étre considérée comme variable d’état et le travail infinitésimal
effectué sur ’élastique par la force de module f s’écrit,

oW = fdL
La différentielle de 1’énergie interne s’écrit,
dU (S,L) =06Q + oW =TdS + fdL

Le coeflicient de dilatation a force constante o et le coefficient de compressi-
bilité isotherme yr de 1’élastique sont définis comme,
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1) Exprimer la différentielle de la longueur dL (T, f) en fonction du coeffi-
cient de dilatation & force constante a ¢ et du coefficient de compressibilité
isotherme 7.

2) Déterminer l'expression de la capacité thermique & longueur constante Cp,

et de la capacité thermique & force constante Cy en fonction des fonctions
entropies S (T, L) et S (T, f) respectivement.

3) Déterminer les différentielles de I'énergie libre dF (T, L) et de ’énergie libre
de Gibbs dG (T, f).

4) Montrer que la chaleur infinitésimale 6Q) fournie & 1’élastique peut étre
écrite en termes des capacités thermiques comme,

§Q=Cpdl +oa; LTdf et 6Q=Crdl+ i—deL
T
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5) Montrer que les capacités thermiques Cr, et C sont liées par la relation de
Mayer,
2
f
Cr—Cp=—TL
XT



